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Abstract. Weight vectors and weight multiplicities are defined in terms of group characters. 
The characters appropriate to all the unitary irreducible representations of the unitary, 
orthogonal and symplectic groups are expressed, following techniques introduced by 
Littlewood, in terms of S-functions. The resulting explicit formulae for weight multiplicities 
are used to tabulate results by making use of the definition of S-functions in terms of 
standard Young tableaux. The results obtained give, for the first time, the k dependence of 
the weight multiplicities of the groups U(k), 0 ( 2 k + l ) ,  Sp(2k) and O(2k). There is no 
limitation on the size of k nor on the dimensions of the representations. 

1. Introduction 

The multiplicities of the weights associated with the basis states of an irreducible unitary 
representation of any compact semi-simple Lie group may be calculated by a variety of 
methods. For example use may be made of the character formula derived by Weyl 
(1926), the explicit formula for the weight multiplicity due to Kostant (1959), or the 
recurrence relations due to Freudenthal (1964) and Racah (1964). 

The most efficient algorithms developed have been based on Freudenthal’s recurr- 
ence relation. For example computer implementations of this relation have been made 
by Agrawala and Belinfante (1969), Krusemeyer (1971), Beck and Kolman (1972a) 
and Kolman and Beck (1973a). No difficulties are experienced with groups of rank as 
large as 9 for representations of dimension not greater than 1000. 

Despite this success all such calculations are rank dependent. This is particularly 
unfortunate in the case of the unitary groups for which the weight multiplicities are in 
fact independent of rank. In the case of the orthogonal and symplectic groups this is no 
longer true but it is still disappointing that these calculations give no clue as to the nature 
of the dependence of the weight multiplicities on the rank. 

This situation may be remedied by making use of S-function techniques to derive 
new algorithms for determining weight multiplicities for all the classical Lie groups. 

possibility arises because weights and their multiplicities may be defmed in terms of 
Indeed the characters ,yk of an irreducible representation AG of a compact 

semi-simple Lie group G of rank k may be written in the form: 

where += (4, ,  &, . . . , &) is a set of k class parameters. If the coefficient M”,O is 
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non-vanishing then m = (m,, m2, . . . , mk) is said to be a weight vector of the represen- 
tation XG having multiplicity MkG. 

In the case of the classical Lie groups the characters may be expressed in terms of 

characters of irreducible representations of the unitary groups and these latter Chaac- 
ters may be defined in terms of the particular symmetric functions known as s- 
functions. Finally §-functions themselves have a simple combinatorial definition in 
terms of standard Young tableaux which allows them to be calculated in a very 
straightforward manner. 

in terms of the maximal 
toroidal subgroup, TG of G is given in 0 2 along with the explicit definition of TG in the 
cases for which G is any one of the groups U&), O(2k + I), Sp(2k) and Q(2k). This 
followed in 0 3 by the introduction of the notation appropriate to S-functions and thek 
definition in terms of standard Young tableaux and the all important Kostka matrix 
which is the basis of the enumerations carried out here. 

The irreducible representations of the classical Lie groups are specified in $4.  
Through the use of S-function techniques involving certain infinite series developed by 
Littlewood (1950) character formulae are then derived. These are used in $ 5  to 
evaluate explicitly weights and their multiplicities. Finally the results are tabulated and 
Some comments made regarding the relationships between multiplicities for different 
groups. 

The definition of the k class parameters (41,42,. . . 

2. Weights and their multiplicities 

The weights and the corresponding weight multiplicities of an irreducible representa- 
tion AG of a compact semi-simple Lie group G of rank k are defined through the 
expression (1.1) for the characters ,& of such a representation in terms of a set of k 
parameters &, . . . , 4 k .  These parameters may be defined through the isomorph- 
ism between the maximal toroidal subgroup TG of G and the group 

Tk=u(l)Xu(l)x. .  . X u ( 1 )  (2.1) 

which is the direct product of k groups U( 1). 
The group elements of Tk are denoted by 

( p l ,  ei+2 , . . . , e"k) with 0 S 4i < 2.ir 

for i = 1,2, . . . , k. The classical Lie groups U(k), Q(2k + l), Sp(2k) and O(2k) are each 
of rank k. The element of the corresponding maximal toroidal subgroup TG which, 
under the isomorphism between TG and Tk, maps onto the element (eid1, e'+', . . . t e'") 
is given for each of these groups G by: 

U(k) 

O(2k + 1) 

+ . .+ e'+" (2.2) 

(2.3) 

(2.4) + e K h  + e-ld* 4 SP(2k) 4. . .+ e-'+k+ ei+k 

(2.5) 
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n e  importance of TG lies in the fact that every element of G belonging to the 
component of G which is connected to the identity element is conjugate to an element 
of T~ This has been proved explicitly for the classical Lie groups by, for example, Weyl 
(1946, pp 179, 217) and Littlewood (1950, pp 16, 18). It follows that if any group 
element of the class parametrized by 4 is denoted by the matrix A then the eigenvalues 
of such.an element are: 

as can be seen from (2.2)-(2.5). 

AAGwhose trace is the character: 
In any representation AG of the group G the element A is mapped onto a matrix 

,y> = xAG(A) = Tr A 'O.  (2.10j 

It is clear from the definition of the parameters $J for each of the classical Lie groups 
that these characters will be functions of $J invariant under permutations of &, 
&, . , . , +k and, in the case of the orthogonal and symplectic groups, invariant under 
arbitrarily distributed changes of sign of these parameters. This invariance is reflected 
in the symmetry of the weight diagrams constructed by assigning to each point in the 
Euclidean weight space specified by a weight vector m = (ml ,  m2, . . . , mk) the appro- 
priate weight multiplicity MkG. The corresponding symmetry group, known as the 
Weyl group, is the symmetric group, s k ,  for U(k).and the hyperoctohedrd group, Qk,  

for O(2k + l), Sp(2k) and O(2k). 

'Ihe symbol h = (Al,  ,IZ7 . . . , Ap) is used to denote a partition of I into p non-Vanishing 
Parts satisfying the conditions A l z = h 2 ~ .  . . z = A p > O  and hl+Az+.  . .+h,=l. It is 
sometimes convenient to write At-1 to signify that h is a partition of 1. Such partitions 
may be used to label the irreducible representations of the symmetric group SI. 
Corresponding to each representation there exists a particular symmetric function of a 
set of indeterminates xl, xz7 . . . , x, called by Littlewood (1950, p 84) an S-function. 
This S-function may conveniently be written as eA(xl, x2, . . . , x,) following the nota- 
tion of Stanley (1971) who defined this function neither in terms of the immanants of a 
matrix7 nor in terms of bi-alterants, but in terms of standard Young tableaux. 

The Young diagram corresponding to the partition h consists of 1 boxes arranged in 
fows of length AI, A*, . . . A,. A standard Young tableau is one in which numbers are 
mrted into each of the boxes of a Young diagram in such a way that the numbers are 
non-decreasing reading from left to right across each row and are strictly increasing 
reading from top to bottom down each column. With this terminology S-functions are 
defined by 
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where the summation is carried out over dl1 vectors a = (a,, a2, . . . , a,) whose compo- 
nents are non-negative integers, and where the coefficient K: is the number of standad 
Young tableaux of shape defined by the partition A containing the numbers 1,2 , ,  . . , 
precisely al, a2, . . . U, times, respectively. 

In any row, r, of such a standard Young tableau there will appear a succession off, 

entries i having no entry i + 1 beneath them and g, entries i + 1 having no entry i above 
them. If this, possibly null, succession of (f, + g,) entries is changed into a successionof 
g, entries i followed by f, entries i + 1 the resulting tableau is still standard, as a n  
Seen from figure 1. The application of this same change to the entries in each row, 

- 5 - 7  - - - 

r = 1,2, . . . , p ,  leads to the conclusion that any standard Young tableau corresponding 
to the vector a = ( a , ,  u2, . . . , ai, . . . , U,) is changed into one of the same shape 
corresponding to the vector U’ = (ul, u2, . . . , ai+l, ui, . . ., a,). Moreover this change 
provides a bijection between the standard Young tableaux associated with a and U’ ,  so 
that K:,= K:. Using the fact that the transpgsitions (i, i + 1) for i = 1,2 ,  . . . , n- 1 
generate the symmetric group S,  it follows that 

where n(u) =(a,,, am,. . . , U,) for any element 7 of S,. It is then an immediate 
consequence of the definition (3.1) that each S function is a symmetric function of the 
indeterminates (xl, x2, . . . , x,). 

Monomial symmetric functions corresponding to a partition p of I into 4 r ~ n -  
vanishing parts pl, p2, . . . , pq are defined by: 

(3.3) 

where the summation is over those elements U of S, leading to distinct monomials with 
exponents in the order given by the permutation (T of the parts PI, ~ 2 ,  . . . I lLq and 
(n  -4) zeros. The completeness of the set of monomial symmetric functions and Fe 
fact that S-functions are themselves symmetric functions implies a linear relationshV 
between them. It follows from (3.2) that this takes the form (Littlewood 19.50, P 

The coefficients Kf: may be found, as special cases of the coefficients appearingin (3.1)3 
though the enumeration of standard Young tableaux. However their values were first 
akulated and tabulated by Kostka (1882, 1907). The matrix, Kostka’s matrix, whye 
dements are K i ,  is non-singular as may be seen by the adoption of a lexicOkFaphrcal 
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ordering for the partitions A and p labelling its rows and columns. With this choice the 
matrix is upper triangular with all diagonal elements unity. Its inverse, also determined 
by Kostka, is thus easy to find and its existence implies the completeness of §-functions 
as iset of symmetric functions. 

Following Littlewood (1950, pp 94, 110) both products and quotients of §- 
fundons may be defined. The product is simply: 

eA.Jx1, x2,. . . , x,) = edxl, x2, . . . , xn)ep(xl, x2,. . . , x,) (3.5) 

and the quotient, as pointed out by Stanley (1971), is: 

(3.6) 

where KfA is the number of standard skew Young tableaux of shape defined by p/A 
containing the numbers 1 ,2 , .  . . , n precisely al, u2,. . . , a, times. The skew Young 
diagram of shape p/X is the diagram introduced by Robinson (1961, p 48) obtained 
from that corresponding to the partition p by the removal of the boxes corresponding to 
the partition A. 

The product (3.5) is obviously a symmetric function, and the same is true of the 
quotient (3.6) as may be seen by making use of the argument leading to (3.2), which now 
yields: 

(3.7) KP/A - P/& 
r(a)-Ka . 

The expansions of these symmetric functions (3.5) and (3.6) in terms of S-functions take 
the forms: 

(3.8) eA.p(x1, ~ 2 , .  . ., xn)= g!,e,(xl, ~ 2 , .  . . , xn), 
p t l + m  

ep/A(xl, x2,. . 9 C &pep(xl, x2, * * .  9 xn). (3.9) 
w-r-l 

Tbese are remarkable for the fact that the coefficientsg& appearing in these expansions 
are identical. From (3.6), (3.9) and (3.1) it is clear that: 

(3.10) 

The rules for the evaluation of the coefficients g& have been given by Littlewood 
(1950, p 94). One important result which follows from a special case of these rules and 
the definition (3.1) is that 

eA(xl, x2, . . . , x,-~, 1) =C ex/,(xl, x2, . . . x,-d (3.11) 

where the summation is carried out over all one-part partitions m. It is also to be noted 
that the rules imply that the product of q S-functions defined by the one-part partitions 
Jh b2, . . . , pq is given by: 

m 

(3.12) 

where the coefficients appearing here are the elements of Kostka’s matrix which 

x 
epL1.pLz ..... -(XI, ~ 2 , .  . . , x,)= KpeA(xl, xz,. . . Xn) 

h+m 

earlier in (3.4). 
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4. Irreducible representations of the classical groups 

The notation used here for the specification of the unitary irreducible represenhtionsof 
the classical Lie groups has been introduced elsewhere (King 1975). The ordinary 
irreducible representations of U(n), O(n) and Sp(n) corresponding to covariant tensors 
are denoted by {A}, [A] and (A) respectively. The composite irreducible representations 
of U(n)  and O(n)  corresponding to mixed tensors and to spinors are denoted by {pi A} 
and [A; A] respectively. 

The relationship between mixed tensor representations of U(n) and tensor rep 
resentations which are either purely covariant or purely contravariant is such that: 

{F; A}= ( - 1 ) ' { z } X { A / t }  (4.1) 
G-' 

U(n) 

where the summations are over all partitions c, is the partition conjugate to g, the 
symbol x indicates a Kronecker product and a superscript -signifies the contragredient 
of a representation defined by taking the transpose of the inverse of the representation 
matrices. Similarly spinor representations are related to the basic spin representation 
[A], and tensor representations in such a way that: 

where the summations are carried out over all one-part partitions m. 

restrictions (Littlewood 1950, pp 240, 295): 
Furthermore the representations of the classical groups are linked by the inverse 

where a and y are specific types of partitions introduced by Littlewood (1950, p 23% 
In addition, two restrictions of interest take the form (King 1975): 

and 
1 (-1) m+c/2 {A/my}=C (- l)(eir)'2{A/E}, 

(- l)'/'{A/my}=C (- l)(e-r)'2{A/~}, 

m*c +e 

m*c el- e 

c (- l ) (e+r) /2  {A/me} = (- l)"/'(A/a} 
m,& e & a  

where E is a self-conjugate partition of e, of Frobenius rank r. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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In terms of characters of irreducible representations of these groups the relation- 

x{”~’(A) = (- 1) 1 x C / G  ( A)*X{~~ZI(A), (4.12) 

,y[”’(A) = 1 (- l)c/Z,y{”/y’(A), (4.13) 

ships (4.1), (4.3), (4.5), (4.6) and (4.9) imply that for any group element A 

P-2 
U(n) 

O(n) 
V-C 

(4.14) 

(4.15) 

where use has been made of the fact that, for a unitary representation (p), x@)(A) = 
xb)(,4)* with the asterisk signifying complex conjugation. 

Littlewood (€950, p 188) showed that if A is an n x n matrix with eigenvalues 
x,,x2,. . . , x,, then the S-function eA(xl, xz, . . . , x,,) is the trace of the invariant matrix 
A’ whose elements are polynomials. in the elements of A. Furthermore if A is an 
element of a matrix group the map onto A” gives a representation of that group whose 
character is given by 

(4.16) 

In addition Littlewood (1950, p 222) proved that in the case of the unitary group this 
representation is precisely the irreducible representation {A}, so that 

x{”}(A) =,$(A) (4.17) 

for all unitary matrices A including those which are the elements of the toroidal 
subgroups given by (2.2)-(2.5). Since in addition the spin characters of the elements 
(2.3) and (2.5) are known (Littiewood 1950, p 254) to be 

xA(A)=C exp[%*41*+2**. . * 4 k ) l ,  (4.18) 

where the summation is carried over all possible Y sign combinations in the exponent, it 
ha straightforward matter to express the characters of all of the irreducible representa- 
tions of the classical groups as explicit functions of cjI = (&, 42, . . . , &). 

Making use, where necessary, of (3.9) and (4.7)-(4.11) the results are found to be 

x”(A) = e h ,  ~ 2 ,  . . . , Xn>- 

(I) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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where it has been convenient to introduce the notation: 

ea(+) = (*I C expt-$(* 41 * 42. . . * 9dI (4.26) 

(4.27) 

Almost all of these results were given first by Littlewood (1950) who Went on to 
express the characters as quotients of determinants. However this is not appropriate for 
a comparison with the general formula (1.1). It is preferable to make use of the 
expansions (3.1) and (3.6) which imply that: 

eA(+)=de  i+l e%, . . . , e'+") 

ei4k e-i+l e,,(+, -4) = e,(ei+l, ei+z, . . . , , 3 ). . . ,  (4.28) 

(4.29) 

where d is summed over all vectors with components either -t.$ or -4 whilst p and q are 
summed over all vectors with non-negative integer components, and the notation used 
is such that p ;  q denotes the vector (pl, p2 ,  . . .-, p k ,  q l ,  q2, . . . , qk) defmed through the 
adjunction of the components of the vectors p and q. 

5. The explicit evaluation of weight multiplicities 

The exploitation of the character formulae (4.29)-(4.35) to determine allweight vectors 
and to evduate the multiplicity of each weight is a straightforward task which is 
considerably eased by the use of the symmetry properties (3.2) and (3.7). It is easy to 
see that these lead immediately to the symmetries of the weight diagrams mentionedin 
0 2 through the invariance of the appropriate multiplicities under arbitrary Pemuta- 
tions of the components of the vectors p ,  q, d and p ;  q, and under an arbitrary number Of 
independent sign changes of the components of the vector d. 

It is therefore only necessary to evaluate the multiplicities of the leading Weights 
denoted by: 
U(k) 43 A,@;, (5.1) 

MCh;Al (5.2) 0(2k+1) Mti, (&U)? 

SP(2k) ~:;, (5.3) 

d A ; A I  (5.4) O m )  w;, @;U) 
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&ere Q and 1 are the partitions (alr u 2 ,  . . . , a,,) and ( T ~ ,  r2, . . .7,) whilst (U), (T; a) 
U) denote the vectors (al, a2, . . . , a,,, 0, 0, . . . , 01, (cl, a2,. . . , uu, 0, 0, . . . , 0, 

-rm.. . -72, -71) and (ul +T, a2+7, . . . , au + 2 , ~ ,  3,. . . ,?) respectively. 
n e  number of distinct weights having these multiplicities (5.1)-(5.4) may be found 

by considerhg permutations and sign changes of the components. If (r and T may be 
written as (a?a?+l...) and ( T ? , T ~ + I  ,... ) with S I + S ~ +  ...= U and rl+r2+ ...= U 
benthe number of weights connected by these Weyl symmetry operations are given by: 

1 1 1 1 1  1 

where the multimonial coefficients are defined by: 

withsl+Sz+. . . = U .  
k !  1 =- k 

(s,s,. . .> ( k - U ) !  sl!s2!. . . (5.9) 

It is to be noted that 

U(k) &$:AI (RU) - - j@d (s;T) (5.10) 

asmay be seen from the formula (4.30). 
From (4.29)-(4.35) it follows that the multiplicities of the leading weights (5.1)- 

(5.4) are given by: 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

wbre now f ,  g, h are summed over all U - ,  U - ,  and w-dimensional vectors with 
nOn-negative integer components, whilst i and j are summed over all U -  and w- 
hensional vectors with all components either 0 or 1. In (5.12) w = k - U - U, whilst in 
(5.13)-(5.17) w = k - U .  The notation adopted is such that in (5.17), for example, the 
vector (u+f+i;f; h + j ;  h )  has components (al+fl+il, a 2 + $ 2 + i 2 , .  . . uu+f,,+ 
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i,, f i  , f2, . . . , f , ,  hl - t i l ,  h2 + j 2 .  . . . , h, +jw,  h~ , h2, - . . hw) with w = k - U. nu the 
symbols + and ;denote vector addition and the adjunction of components respectively, 

In these expressions (5.11)-(5.17) it is to be noted that the k dependence of the 
weight multiplicities comes about through the summations over the vectors h and 1. 
Indeed in (5.12) the summation over h may be replaced by a summation over *bjbary 
partitions o provided that for each partition of the form (U: ’ ,  02+1 . . .) the result is 
multiplied by the multinomial coefficient 

(5.18) 

representingthe number of vectors h related to CO by permutations of its components. 
In the same way in (5.13) and (5.16) the summation over h may be replaced by a 

summation over the special partitions B provided that for each such partition of the 
form (p?’i, pqk,,, . . .) the result is multiplied by the multinomial coefficient 

(5.19) 

The summations over h and j in (5.14) and (5.16) are more complicated to deal with, 
but the h summation may be replaced by a summation over f3 with the inclusion of the 
additional factor (5.19), whilst the summation over j is accomplished by adding 0 or 1 in 
all possible ways to alternate parts of fi starting with the first part. This will lead to a 
further dependence on k if the vectors so obtained are replaced by partitions. 

The simplest formula of all is of course (5.1 1). By virtue of the definition of Kostka’s 
matrix, (3.4) gives rise to multiplicities I&: of U(k) which are independent of k. The 
use of this formula corresponds to the use of a procedure due to Delaney and Gruber 
(1969) and has been discussed elsewhere (King and Plunkett 1972). It is to be noted 
that the use of (3.12) is particularly advantageous since it gives elements of the 
multiplicity matrix column by column. For example, in the notation appropriate to 
representations of U@): 

(5.20) (2) X { 1) X ( 1) = (4) + 2(3 1) + {22} + (2 1 2, 

corresponding to the existence of the standard Young tableaux: 

1123 112 113 11 11. 
3 2 2 3 2  

3 

Hence 
~ ‘ 4 ’ ~  - 1 ~ : ; 2 )  = 2 &;;) = 1 q 2 p )  e 1 2 1  = 1 M;;& 0. (5.21) 

In order to use the formulae (5.12), (5.13), (5.15) and (5.16) it itxtfirst ~ ~ X s s m  to 
U&) (21 1- 

evduate some S-function quotients. For example 

(5.22) 

(5.23) 1 (- 1)(e-r)’2{3 1 / ~ )  = (3 l} + (3) i- (2 1) - { I}, 
&e 

( - 1)””(3 1 /a} = (3 l} - {2}, 
&-Q. 

(5.24) 
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( - 1)c'2{ 3 1 /r} = (3 1) - (2) - (1 '} +{O}. 
r C C  

(5.25) 

The k dependence (5.18) arising from the use of (5.12) may then be illustrated by, 
of U(k). m e  first term of (5.22) for example, the calculation of the multiplicities 

gives the contribution 

= 1 . 1  .(k-3)+1.1 .+O. &+O. 1=k-2. (5.26) 

n e  contribution of the second term of (5.22) is easily seen to be -1, whilst the third 
term gives no contribution. Hence 

U(k) M-(qz> (1 .I)- - k-3. (5.27) 

In the same way the contribution of the leading term (31) in (5.23), (5.24) and (5.25) 
to the multiplicities i$:;', A@;), and M$,'] of the groups O(2k + l), Sp(2k) and O(2k) 
respectively, are all given by: 

(5.28) 

The only other terms giving rise to non-vanishing contributions to these multiplicities 
are the terms -{2} in (5.24) and (5.25). In each case the contribution is easily seen to be 
-I. Combining .these results yields the multiplicities: 

(5.29) 

(5.30) 

(5.31) 

As a final example the multiplicities h@!;' of the groups O(2k + 1) and O(2k) may 
be found from (5.14) and (5.17) respectively by first making use of the S-function 
quotients: 

(- 1)"'2{31/or)={31}-{2} 

(- l)(e+r)'2{3 1 / ~ }  ={3 1) -{3} -{2 l} +{ l}. 

aka 

d- e 

The contributions of the leading term (31) to the multiplicities are: 

(5.32) 

(5.33) 

=2(k - 1)+2. $(k - l)(k -2)+(k - 1)+ 1 = k2. (5.34) 
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Similarly the contributions of the terms (3) and (21) are: 

and 

(5.36) 

whilst that of (2) is clearly I. Combining these results yields the multiplicities: 

O(2k + 1) k2- 1, (5.37) 

iV@il= kz-2k +I.  (5.38) 

6. Tabulation of results 

It has been shown that Littlewood’s use of S-function techniques leading to explicit 
formulae for characters of representations of the classical Lie groups may be further 
exploited to evaluate weight multiplicities. The evaluation procedure depends upon 
the determination of the elements K i  of the Kostka matrix, together with some 
combinatorics of vectors with integer-valued components. The only other necessary 
ingredient is the determination of certain S-function quotients associated with some 
well known series of S-functions. 

The results obtained in this way are given in tables 1-7. They may be checked for 
consistency in several ways. Use may be made of the factors (5.5)-(5.8) to check the 
dimensions of the representations against known formulae (Robinson 1961, p 60, King 
1970, Abramsky et a1 1973). For example the dimension of the representation {i3; 21} 
of U( k) is given by: 

~ ~ { i ~ ;  2)= 1 i3 k + 1(3 k 2) + (k -3)j2 k 1)  +%k2-5k+6)( :), 
where the non-vanishing multiplicities: 

have been taken from table 2 ifter making use of (5.10). It then follows that 

Dk{i3; 2) = A( k - 3)( k - 2) k(  k + 1 )( k + 2) 

in accordance with the general formula given elsewhere (King 1970). 

(4.8) and (King 1975): 

(6.3) 

Alternatively, other checks are provided by the use of the restriction formulae (4.7)9 

(6.4) 

(6.5) 

(6.6) 
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where E* corresponds to the representation of U(k) in which each group elementA is 
mapped onto (det A)*. For the group element (2.21, this gives rise to the character 
exp[-$(& + & + . . . +&)I. It should be stressed that these restrictions (4.7), ( 4 4 ,  
(6.4)-(6.6) are precisely the restrictions appropriate to classes of elements labelled by+ 
in both groups and subgroup. 

To exploit (6.4) it is only necessary to note that: 

It follows that, for example 

- M'f; 3}+ &$21)+ &e; 2 )  - 
( 0 ; 2 )  (0,~) (0: 2)  - (k - l )+ (k  -2) + 1 = 2 k  -2 (6.8) 

as required for agreement with the result (5.31). 
This technique clearly provides a useful check on the internal consistency of the 

tabulated results. 
Finally it should be remarked that although all weights and their multiplicities may 

be calculated using the character formulae given here, these formulae do not of COW 
provide sufficient information to label uniquely all the basis states of the corresponding 
representations. This is a direct result of the formulae (5.12)-(5.17) containing 
negative as well as positive terms. 

In order to label the basis states it is necessary to use instead of the character 
formulae the branching rules appropriate to the reduction from G to the toroidal 
subgroups TG defined by (2.2)-(2.5J. This work has been initiated elsewhere (King 
1976) and leads to generalizations of both Gel'fand patterns and Young tableaux, as 
well as to the confirmation of the general formulae (5.11)-(5.17) for multiplicities. 
These generalizations of the Young tableaux provide a method of calculating the 
multiplicities involving only positive contributions, which again may be used to check 
the results tabulated here. 

Turning to the tables themselves they represent the generalization to all the classid 
Lie groups of the results appropriate to U(k) tabulated by Blaha (1969). For conveni- 
ence the tables have been presented in terms of rectangular blocks but it is clear that 
with a suitable ordering of these blocks the multiplicity matrix of each classid Lie 
group G. is upper triangular with each diagonal element unity. This implies the 
invertibility of these matrices. This has been illustrated in the case of covariant tensr 
representation of U(k) by Blaha (1 969) who calculated the coefficient Bf; appearingin 
the identity: 

- 

A 

which is the inverse of (3.4) mentioned in 0 3. The other inverse multiplicity matrices 
may be calculated in a straightforward way. They are of use in determining, for 
example, plethysms associated with the orthogonal and symplectic groUPS. These 
define branching rules appropriate to certain groupsubgroup restrictions (Plunkett 
1972). 

n e  weight multiplicities of the covariant tensor irreducible representationsof U(k) 
are independent of the rank k. In general all the other weight multiplicities ye 
dependent on k. The powers of k which appear in any block of the multipli&'mam 
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are determined by the differences, 1 - s and m - t, between the numbers of which A, a 
and c, Tare partitions. The great ment of the results tabulated here is that they apply to 

of arbitrarily high rank and to unitary representations of arbitrarily high 
&ensionS. Thus unlike the methods reviewed by Beck and Kolman (1972b), Gruber 
(1973) and Kolman and Beck (1973b) the method presented here does not involve 
wrying out essentially different calculations for groups differing only in rank. 

References 

Abrmsky Y J. Jahn H A and King R C 1973 Can. J. Math. 25 941-59 
Agrawda V K and Belinfante J G 1969 BIT 9 301-14 
Beck R E and Kolman B 1972a Indag. Math. 34 350-2 - 1972b J. Ass. Comp. Mach. 19 577-89 
Biaha S 1969 J. Math. Phys. 10 2156-68 
Delaney R M and Gruber B 1969 J. Math. Phys. 10 252-65 
Freudenthal H 1954 Indag. Math. 16 369-76 
Gruber B 1973 SIAMJ. Appl. Math. 25 269-86 
King R C 1970 Can. J. Math. 22 436-48 
- 1975 J. Phys. A : Math. Gen. 8 429-49 
- 1976 Proc. 4th Int. Colloq. on Group Theoretical Methods in Physics, Nijmegan, 1975 to be published 
King R C and Plunkett S P 0 1972 J. Physique 33 145-53 
Kolman B and Beck R E (1973a) SIAMJAppl. Math. 25 300-12 
- 1973b a m p .  Phys. Commun. 6 24-29 
Kostant B 1959 Trans. Am. Math. Soc. 93 53-73 
Kostka C 1882 Crelle’sJ. 93 89-123 
-1907 Jber. Dt. Mat Verein. 16 429-50 
Knwmeyer M I  1971 BIT 11 310-16 
Littlewood D E 1950 The Theory of Group Characters, 2nd edn (London: Oxford University Press) 
Plunkett S P 0 1972 MPhiZ Thesis Southampton University 
Raah G 1964 Group Theoretical Concepts and Methods in Elementary Particle Physics ed F Gursey (New 

Robinson G de B 1961 Representation Theory ofthe Symmetric Group (Edinburgh: Edinburgh University 

Stanley R P 1971 Stud. Appl.  Murh. 50 167-88 
WeYl H 1926 Math. Z. 24 377-95 - 1946 The Classical Groups (Princeton, N J :  Princeton University Press) 

York: Gordon and Breach) pp 1-36 

PreSS) 


