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Abstract. Weight vectors and weight multiplicities are defined in terms of group characters.
The characters appropriate to all the unitary irreducible representations of the unitary,
orthogonal and symplectic groups are expressed, following techniques introduced by
Littlewood, in terms of S-functions. The resulting explicit formulae for weight multiplicities
are used to tabulate results by making use of the definition of S-functions in terms of
standard Young tableaux. The results obtained give, for the first time, the k dependence of
the weight multiplicities of the groups U(k), O(2k +1), Sp(2k) and O(2k). There is no
limitation on the size of k nor on the dimensions of the representations.

1. Introduction

The multiplicities of the weights associated with the basis states of an irreducible unitary
representation of any compact semi-simple Lie group may be calculated by a variety of
methods. For example use may be made of the character formula derived by Weyl
(1926), the explicit formula for the weight multiplicity due to Kostant (1959), or the
recurrence relations due to Freudenthal (1964) and Racah (1964).

The most efficient algorithms developed have been based on Freudenthal’s recurr-
ence relation. For example computer implementations of this relation have been made
by Agrawala and Belinfante (1969), Krusemeyer (1971), Beck and Kolman (1972a)
and Kolman and Beck (1973a). No difficulties are experienced with groups of rank as
large as 9 for representations of dimension not greater than 1000.

Despite this success all such calculations are rank dependent. This is particularly
unfortunate in the case of the unitary groups for which the weight multiplicities are in
factindependent of rank. In the case of the orthogonal and symplectic groups this is no
longer true but it is still disappointing that these calculations give no clue as to the nature
of the dependence of the weight multiplicities on the rank.

This situation may be remedied by making use of S-function techniques to derive
new algorithms for determining weight multiplicities for all the classical Lie groups.
This possibility arises because weights and their multiplicities may be defined in terms of
characters. Indeed the characters XQ\,G of an irreducible representation Ag of a compact
Semi-simple Lie group G of rank k may be written in the form:

dio=X e @
where ¢ = (¢p,, G, ..., P is a set of k class parameters. If the coefficient M,e is
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864 R CKing and S P O Plunkett

non-vanishing then m = (m;, my, . . ., my) is said to be a weight vector of the represen-
tation Ag having multiplicity M.

In the case of the classical Lie groups the characters may be expressed in terms of
characters of irreducible representations of the unitary groups and these latter charac.
ters may be defined in terms of the particular symmetric functions known as §.
functions. Finally S-functions themselves have a simple combinatorial definition i
terms of standard Young tableaux which allows them to be calculated in a very
straightforward manner.

The definition of the k class parameters (¢1, ¢z, . . . , dx) in terms of the maxima}
toroidal subgroup, T, of G is given in § 2 along with the explicit definition of Ty in the
cases for which G is any one of the groups U(k), O(2k +1), Sp(2k) and O(2k). This s
followed in § 3 by the introduction of the notation appropriate to S-functions and their
definition in terms of standard Young tableaux and the all important Kostka matrix
which is the basis of the enumerations carried out here.

The irreducible representations of the classical Lie groups are specified in §4.
Through the use of S-function techniques involving certain infinite series developed by
Littlewood (1950) character formulae are then derived. These are used in § 5 to
evaluate explicitly weights and their multiplicities. Finally the results are tabulated and
some comments made regarding the relationships between multiplicities for different

groups.

2. Weights and their multiplicities

The weights and the corresponding weight multiplicities of an irreducible representa-
tion Mg of a compact semi-simple Lie group G of rank k are defined through the
expression (1.1) for the characters XQG of such a representation in terms of a set of k
parameters ¢y, ¢, . . ., ¢ These parameters may be defined through the isomorph-
ism between the maximal toroidal subgroup T of G and the group

T, =UQ)xU(1)x...xU(1) 2.1

which is the direct product of k groups U(1).
The group elements of T, are denoted by

€%, €%, ..., 6% with 0< ¢, <27
fori=1,2,..., k. Theclassical Lie groups U(k), O(2k +1), Sp(2k) and O(2k) are each
of rank k. The element of the corresponding maximal toroidal subgroup T Whl.‘ih’

under the isomorphism between T and T, maps onto the element €, e%,....e%)
is given for each of these groups G by:

Uk) e el +el¥
cos ¢; —sin ¢>1] i [cos ¢, —sin ¢2] [ [cos ¢ —sin ¢k]_§_1

sing; cospy) Lsing, cos @, sin ¢ COS bk

2.2)
OQ2k+1) [

Sp(2k) e el feT 2 et ekt e 24
[COS $1 —sin ¢1] : [cos ¢, —sin ¢2] i [cos br —sin¢k].

2k .
O@k) sin; cos¢;l Lsing, cosep; sing, €08 Pk

(2.5)
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The importance of Tg lies in the fact that every element of G belonging to the
component of G which is connected to the identity element is conjugate to an element
of T This has been proved explicitly for the classical Lie groups by, for example, Weyl
(1946, pp 179, 217) and Littlewood (1950, pp 16, 18). It follows that if any group
clement of the class parametrized by ¢ is denoted by the matrix A then the eigenvalues
of such-an element are:

U(k) (€%, e'%,..., % ‘ 2.6)
0Rk+1) (€71, e, e7 2 e, . e e 1) 2.7
Sp(2k) (€7,e™1, 6742, M2, L 7% €% v (2.8)
0(2k) (€71, 6%, e7%2, 62 | e &% (2.9)
as can be seen from (2.2)-(2.5).

In any representation Ag of the group G the element A is mapped onto a matrix
Ao whose trace is the character:

x3e=x"(A)=Tr A*e. (2.10)

Itis clear from the definition of the parameters ¢ for each of the classical Lie groups
that these characters will be functions of ¢ invariant under permutations of ¢,
..., & and, in the case of the orthogonal and symplectic groups, invariant under
arbitrarily distributed changes of sign of these parameters. This invariance 1s reflected
in the symmetry of the weight diagrams constructed by assigning to each point in the
Euclidean weight space specxﬁed by a weight vector m=(my, m,, ..., my).the appro-
priate weight multiplicity Mae. The corresponding symmetry group, known as the
Weyl group, is the symmetric group, Sk, for U(k).and the hyperoctohedral group, Qy,
for Ok +1), Sp(2k) and O(2k).

3. Sfunctions

The symbol A=(As, A, . . ., A,) is used to denote a partition of ! into p non-vanishing
parts satisfying the conditions A;ZA,=...2A,>0 and A;+Ax+...+A, =1L Tt is
sometimes convenient to write A—! to signify that A is a partition of L Such partitions
may be used to label the irreducible representations of the symmetric group S,
Corresponding to each representation there exists a particular symmetric function of a
st of indeterminates x;, x,, . . . , X, called by Littlewood (1950, p 84) an S-function.
This S-function may conveniently be written as e, (x;, Xa, . . . , X,) following the nota-
tion of Stanley (1971) who defined this function neither in terms of the immanants of a
Watrix, nor in terms of bi-alterants, but in terms of standard Young tableaux.

The Young diagram corresponding to the partition A consists of I boxes arranged in
Tows of length A4, A3, . . ., A,. A standard Young tableau is one in which numbers are
inserted into each of the boxes of a Young diagram in such a way that the numbers are
lon-decreasing reading from left to right across each row.and are strictly increasing
;egling from top to bottom down each column. With this terminology S-functions are
tlined by

ex(X1 X2s ., X)) =2, Kpx$ixg2. .. xin 3.1
a
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where the summation is carried out over dll vectors a =(a;, a,, . . ., a,) whose compo-
nents are non-negative integers, and where the coefficient K3 is the number of standard
Young tableaux of shape defined by the partition A containing the numbers 1,2, .. n
precisely ay, as, .. ., a, times, respectively. C J
In any row, r, of such a standard Young tableau there will appear a succession of f,
entries i having no entry i +1 beneath them and g, entries i + 1 having no entry | above’
them. If this, possibly null, succession of (f, + g;) entries is changed into a succession of
g, entries i followed by f; entries i +1 the resulting tableau is still standard, as can be
seen from figure 1. The application of this same change to the entries in each Tow,

1 . 71
_J_. A IOV N I A 125 EEXRIESH
i1
: "——ff_’;‘_gr—_')‘i
' i
1 |
_{--___ | | I D N PR P
2] '
: ‘_gr—')i(_t: _-’,E
Figure 1.

r=1,2,..., p,leads to the conclusion that any standard Young tableau corresponding
to the vector a=(ay, a3, ..., @, Gi+1, . . . , G,) is changed into one of the same shape
corresponding to the vector a’=(ay, as, . .., Gi+1, @, . . ., ,). Moreover this change
provides a bijection between the standard Young tableaux associated with @ and a', so
that K} = K. Using the fact that the transpesitions (i, i+1) for i=1,2,...,n-1
generate the symmetric group S, it follows that

Krw=Ka, (32

where m(a)=(a,,, @p,,- .., a,,) for any element 7 of S,. It is then an immediate
consequence of the definition (3.1) that each S function is a symmetric function of the
indeterminates (x,, x,, . . ., x,). .

Monomial symmetric functions corresponding to a partition p of [ into 4 non-
vanishing parts w,, &, . . ., u, are defined by:

Kty T, ) = T xbonxter. . b | (33
o .

where the summation is over those elements o of S, leading to distinct monomials with

exponents in the order given by the permutation o of the parts w;, 42, > Hq and

(n—q) zeros. The completeness of the set of monomial symmetric functions and ﬂ}e

fact that S-functions are themselves symmetric functions implies a linear relationship

between them. Itfollows from (3.2) that this takes the form (Littlewood 1950,p 191)
ek(xlv X250 00 xn) = Z K:I.kp.(xla X250 0ns xn)' (34)

el
(3.1)

The coefficients K} may be found, as special cases of the coefficients appearing in p

through the enumeration of standard Young tableaux. However their values fvvereh ]
calculated and tabulated by Kostka (1882, 1907). The matrix, Kostka’s matrix, Whl_";l
elements are Ky, is non-singular as may be seen by the adoption of a lexicograp
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ordering for the partitions A and p labelling its rows and columns. With this choice the
matrix is upper triangular with all diagonal elements unity. Itsinverse, also determined
by Kostka, is thus easy to find and its existence implies the completeness of S-functions
55 2 set of symmetric functions.

Following Littlewood (1950, pp 94, 110) both products and quotients of S-
functions may be defined. - The product is simply:

exulXn, X2 . s X)) = (X0, %o, .o, Xdep(Xe, X2, L, Xy) (3.9)
and the quotient, as pointed out by Stanley (1971), is:

eon (X1, 20 . oy Xn) = 2 Ko xoixle | xon (3.6)
a

where K/* is the number of standard skew Young tableaux of shape defined by p/A
containing the numbers 1,2, ..., n precisely ay, a,, . . ., a, times. The skew Young
diagram of shape p/\ is the diagram introduced by Robinson (1961, p 48) obtained
from that corresponding to the partition p by the removal of the boxes corresponding to
the partition A. _ ‘

The product (3.5) is obviously a symmetric function, and the same is true of the
quotient (3.6) as.may be seen by making use of the argument leading to (3.2), which now
yields:

K9G =Ko, 3.7)

The expansions of these symmetric functions (3.5) and (3.6) in terms of S-functions take
the forms: '

exulXi, X2, %)= Y gRuep(X1, Xay ., X)), (3.8)
p—i+m

Con (X1, X2y X)) = Y ghulu(X1, Xa, ..., Xn). (3.9)
: . w—r~{

These are remarkable for the fact that the coefficients gf,, appearing in these expansions
are identical. From (3.6), (3.9) and (3.1) it is clear that:

K=Y g8 K" (3.10)

n

The rules for the evaluation of the coefficients gf,, have been given by Littlewood
(1950, p 94). One important result which follows from a special case of these rules and
the definition (3.1) is that

ex(xy, X2, ..., %y, 1) =Z ex/m(xl, X2y ooy Xne1) (3.11)

Where the summation is carried out over all one-part partitions m. It is also to be noted
that the rules imply that the product of q S-functions defined by the one-part partitions
Fu g, . .., g is given by:

eul'#z'...'uq(xly X500 xn) =/\; K,).;.ek(xh X2y 0 ns -xn) (312)

“here the coefficients appearing here are the elements of Kostka’s matrix which
Ppeared earlier in (3.4).
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4. Irreducible representations of the classical groups

The notation used here for the specification of the unitary irreducible representations of
the classical Lie groups has been introduced elsewhere (King 1975). The ordinary
irreducible representations of U(n), O(n) and Sp(n) corresponding to covariant tensor
are denoted by {A}, [A] and (A) respectively. The composite irreducible representations
of U(n) and O(n) corresponding to mixed tensors and to spinors are denoted by {ji; A}
and [A; A] respectively.

The relationship between mixed tensor representations of U(n) and tensor rep-
resentations which are either purely covariant or purely contravariant is such that:

Uln) {i; k}=§§ (- ){/G NG (4.1)
{R}x{\}= ; {n/T NG “2)

where the summations are over all partitions £, 7; is the partition conjugate to {, the
symbol Xindicates a Kronecker product and a superscript —signifies the contragredient
of a representation defined by taking the transpose of the inverse of the representation
matrices. Similarly spinor representations are related to the basic spin representation
[A], and tensor representations in such a way that:

O(n) [A;A]=Y (- 1)™[A]X[N/m] @3)
[AIx[N]=} [A; A/m] 4.4)

where the summations are carried out over all one-part partitions m.
Furthermore the representations of the classical groups are linked by the inverse
restrictions (Littlewood 1950, pp 240, 295):

O(n) 1 U(n) N ; (= D\ /43, (4.5)
Sp(m) % Um) W% “g (=D}, (4.6)

where a and v are specific types of partitions introduced by Littlewood (1950, p 238).
In addition, two restrictions of interest take the form (King 1975):

O(n) | O(n—1) A ;[h/m] Cx)
[A;M]] 2 [A5M/m] (4.8)
and "
PR D™ m}= B (- D, (49)
T O my=T (-0, 10
2 DN me =T (1)) e} (4.11)

where € is a self-conjugate partition of e, of Frobenius rank r.
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In terms of characters of irreducible representations of these groups the relation-
ships (4.1), (4.3), (4.5), (4.6) and (4.9) imply that for any group element A

) X*HA=3 (- DA ™B(A), (4.12)
o) XW(A)=,§C( — 12 *(4), 4.13)

x4MA)=x*A) I DE2yNMe(A), (4.14)
$pin) x¥Aa)= T (1" 4) (4.15)

where use has been made of the fact that, for a unitary representation {p}, x®(A) =
{P(A)* with the asterisk signifying complex conjugation.

Littlewood (1950, p 188) showed that if A is an n X n matrix with eigenvalues
X, X2, - - - » Xn then the S-function e\(x;, X, ..., X,) is the trace of the invariant matrix
A" whose elements are polynomials. in the elements of A. Furthermore if A is an
¢lement of a matrix group the map onto A* gives a representation of that group whose
character is given by

xMA)=ex(x1, xa, . . ., X). (4.16)
In addition Littlewood (1950, p 222) proved that in the case of the unitary group this
representation is precisely the irreducible representation {A}, so that

x™M(A)=xNA) (4.17)

for all unitary matrices A including those which are the elements of the toroidal
subgroups given by (2.2)-(2.5). Since in addition the spin characters of the elements
(2.3) and (2.5) are known (Littlewood 1950, p 254) to be

XX(A) -X explii(x ¢ by ... 2 )], (4.18)

where the summation is carried over all possible + sign combinations in the exponent, it
isastraightforward matter to express the characters of all of the irreducible representa-
tions of the classical groups as explicit functions of & = (¢4, ¢2, . . ., P).

Making use, where necessary, of (3.9) and (4.7)-(4.11) the results are found to be

Wy x4 =ed) (4.19)
XBHA)= T, (~1) ey ~dlerr(d) (4.20)

02k+1)  x™(A) =§e<—,1)“?"’”em(¢, -b) (4.21)
KA = T (~D e enalds =) (4.22)

Wk x®A)= X (D enuld, —4) (4.23)
o x™MA) =1 D% ex (b, —b) (4.24)

X[A; )u](A) —- Z (_ 1)(e+r)/2eA(¢)e”€(¢, —¢) (425)
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where it has been convenient to introduce the notation:

eald) = (Z:) explzi(E ¢ £ ¢s. . . £ i) (4.26)
ad)=ea(e?, e, ... &%) | (4.27)
e (b, —d)=e, (€%, e, ..., &% e e | 7%, (4.28)

Almost all of these results were given first by Littlewood (1950) who went on 1o
express the characters as quotients of determinants. However this is not appropriate for
a comparison with the general formula (1.1). It is preferable to make use of the
expansions (3.1) and (3.6) which imply that:

Uk) XM=Y KX eP® - (4.29)
- ,
Xg'i;)-}= Z (- l)z Z K:/:K;/t ei(p—q)-d” . 3 : (4_30)
oz pq . -
0Rk+1)  x3'=Y (-1 22F Kz @0, o (431)
€—e Pq .
o™= L (-1 L Kyig B e, R
o~a q d )
Sp(2k) =Y (- Y KYz e , (4.33)
a—a . g )
0ek) =3 (-DTT K, (434
Yyc g o
Xe=T (DY KL e (4.35)
€ Pq d

where d is summed over all vectors with components either +3 or —3 whilst p and q are
summed over all vectors with non-negative integer components, and the notation used
is such that p; q denotes the vector (py, ps,. .., Px» 41,92, - - - , qi) defined through the
adjunction of the components of the vectors p and q.

5. The explicit evaluation of weight multiplicities

The exploitation of the character formulae (4.29)~(4.35) to determine all weight vectors
and to evaluate the multiplicity of each weight is a straightforward task which is
considerably eased by the use of the symmetry properties (3.2) and (3.7). Itis easy to
see that these lead immediately to the symmetries of the weight diagrams mentioned in
§ 2 through the invariance of the appropriate multiplicities under arbitrary permuta-
tions of the components of the vectors p, ¢, d and p; g, and under an arbitrary number of
independent sign changes of the components of the vector d. . .

It is therefore only necessary to evaluate the multiplicities of the leading weights
denoted by:

U(k) xS i (1)
oek+1) M¥.  MEN. : 62
Sp(2k) MY, | (5.3)

; ‘ - 4
0(2k) o M 54
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where & and 7 are the partitions (o7}, 02, . .., 0,) and (71, 7, . . . 7,) whilst (@), (7; @)
ad (A; @) denote the vectors (0, 0, ..., 0,,0,0,...,0),(61,02,...,0,,0,0,...,0,
Tpyere T T2 ~7) and (0, +3, 02 +%,...,0,+5.5,3,...,D) respectively.

The number of distinct weights having these multiplicities (5.1)~(5.4) may be found
by considering permutations and sign changes of the components. If ¢ and = may be

written as (01'04+1 . ..) and (71, 7241, ...) With s;+8,+...=u and ,+H+...=v
then the number of weights connected by these Weyl symmetry operations are given by:
| ) (5
U(k) ' (0-). <s152 SN (T’ cr). $182...4ht ... (5.5)
k+1)  (o): 2"( k ) (A; 0): 2"( k ) (5.6)
0(2 ’ $182.. ’ ) $182... )
Kk
Sp(2k) (0): 2 < ) ;.7
$182...
k k
02k) @ 2( ) @er 2 * ) (5.8)
$182... $182...
where the multimonial coefficients are defined by:
: k ) k! 1 .
== +s5+... =L .
Qﬁ,.. G—wlsls, . hsts " (5.9)

It is to be noted that
Uk) MEN=MEY (5.10)
E may be seen from the formula (4.30).

From (4.29)—(4.35) it follows that the multiplicities of the leading weights (5.1)-
(5.4) are given by:

Ulk) N=K2 (5.11)
mg:)} = ;Z ;z;. (_ 1)ZK;liﬁg;th{§f;g:h’ (5‘ 12)
~z '8y
02k+1)  MEF=Y ¥ (—D“ K pnm (5.13)
e—ef.h
A’IE:;:;J) =X fg ; (- l)a/sz'{:fﬂ‘;f;h+j;h- (5.14)
oa fhi,
%) MP= T T (DK (5.15)
o—a f,h
0(2k) =Y T (— DKy pnine (5.16)
v~c fh
(ﬁi’&]) =) fg:” (- 1)(e+r>/2K2-{:f+i;f;h+j;h; (5.17)
e—e f,h,i,

Where now f, g, k are summed over all u-, v-, and w-dimensional vectors with
lon-negative integer components, whilst i and j are summed over all u- and w-

ensional vectors with all components either O or 1. In(5.12) w = k —u — v, whilst in
(5-13)-(5.17) w =k —u. The notation adopted is such that in (5.17), for example, the
Vector (0+f+i;f;h+j; k) has components (o;+f,+iy, o2+fr+is, ... o t+f+
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iwflafZ, ] sfus h1+jl’ h2+j2- LR hw+jw’ h]v h2a ) hw) with w= k—u. Thus the
symbols + and ; denote vector addition and the adjunction of components Tespectively

In these expressions (5.11)-(5.17) it is to be noted that the k dependence of thé
weight multiplicities comes about through the summations over the vectors k and i
Indeed in (5.12) the summation over h may be replaced by a summation over arbitr
partitions « provided that for each partition of the form (w1, wy2,, ...) the result is
multiplied by the multinomial coefficient .

() 6

WiWs...

representing the number of vectors h related to w by permutations of its components.

In the same way in (5.13) and (5.16) the summation over b may be replaced bya
summation over the special partitions B provided that for each such partition of the
form (Bf” 1 3§ﬁf+1, . ..) the result is multiplied by the multinomial coefficient

(blkb:.u. ) (5.19

The summations over k and j in (5.14) and (5.16) are more complicated to deal with,
but the b summation may be replaced by a summation over 8 with the inclusion of the
additional factor (5.19), whilst the summation over j is accomplished by adding O or 1in
all possible ways to alternate parts of B starting with the first part. This will lead to a
further dependence on k if the vectors so obtained are replaced by partitions.

The simplest formula of ali is of course (5.11). By virtue of the definition of Kostka’s
matrix, (3.4) gives rise to multiplicities Mff;}) of U(k) which are independent-of k. The
use of this formula corresponds to the use of a procedure due to Delaney and Gruber
(1969) and has been discussed elsewhere (King and Plunkett 1972). It is to be noted
that the use of (3.12) is particularly advantageous since it gives elements of the
multiplicity matrix column by column. For example, in the notation appropriate to
representations of U(k):

{23x{1}x{1}={4}+2{31}+{23+{21% , (5.20)
corresponding to the existence of the standard Young tableaux:
1123 112 113 11 11.

k) 2 23 2
3
Hence
2] 2 {14}
Utk) Mfla=1 Moh=2 Moh=1 Maom=1 Mgi=0.  (521)

In order to use the formulae (5.12), (5.13), (5.15) and (5.16) it is<first necessary to
evaluate some S-function quotients. For example '

Z (S B = T2 - T (1 +{T)<{0) 62

T (~1)231/6 =31+ 3} +21)-{1}, (5.23)

Ea(—l)“/2{3l Ja}={31}-{2}, (5.24)



Weight multiplicities and S-functions 873
; (- D731/4}={31}-{2} - {13 +{0}. (5.25)

The k dependence (5.18) arising from the use of (5 12) may then be illustrated by,
for example, the calculation of the multiplicities Mﬁgz i1y of U(k). The first term of (5.22)
gives the contribution

PN < k-3
LK I S

—Km K3 ( ) Kn K(200+K§)1210K(12100+Kf>1;?}2;0 122)1;0

=1.1.(k—=3)+1.1.40.1+0.1=k—2. (5.26)

The contribution of the second term of (5.22) is easily seen to be —1, whilst the third
term gives no contribution. Hence

U(k) 8 =k-3. (5.27)

In the same way the contribution of the leadmg term {31}in (5.23), (5.24) and (5.25)
to the multiplicities M(,’, M), and MG, of the groups O(2k +1), Sp(2k) and O(2k)
respectively, are all given by:

) Kwn(bkb L) =Kl K= 2tk - D+ 1= 21, (5.28)
The only other terms giving rise to non-vanishing contributions to these multiplicities
are the terms —{2}in (5.24) and (5.25). Ineach case the contribution is easily seen to be
—1. Combining these results yields the multiplicities:

0Qk+1) MBI=2k-1, (5.29)
Sp(2k) 6y =2k-2, (5.30)
O(2k) M3 =2k-2. (5.31)

As a final example the multiplicities M{a) of the groups O(2k +1) and O(2k) may
be found from (5.14) and (5.17) respectively by first makmg use of the S-function
quotients:

Y (—D¥*31/a}={31}—{2} (5.32)
Y (-1)“231/e={31}—{3} {21} +{1}. (5.33)

€~e

The contributions of the leading term {31} to the multiplicities are:

,E K2+f+i BH.EJH

k—1 k-1 k-1
=K;;10;1;1( 1 )+K20x o( 9 )+K§;10;1;0< 1- >+K3100

=2(k—-1)+2.3k-Dk~2)+(k-1)+1=k> (5.34)
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Similarly the contributions of the terms {3} and {21} are:

k—1
f;_] K tfrtifhtisn= Kg;on;o( 1 )'*' Kiooo=(k—1)+1=k, (5.35)

and
21 _ 21 k=1Y _ —
Z Koiprispnejin= K010 =k-1, (5.36)
fhij 1
whilst that of {2} is clearly 1. Combining these results yields the multiplicities:
ORk+1)  M@3'=k*-1, (5.37)
0@k)  M@3=k’-2k+1. (5.39

6. Tabulation of results

It has been shown that Littlewood’s use of S-function techniques leading to explicit
formulae for characters of representations of the classical Lie groups may be further
exploited to evaluate weight multiplicities. The evaluation procedure depends upon
the determination of the elements K} of the Kostka matrix, together with some
combinatorics of vectors with integer-valued components. The only other necessary
ingredient is the determination of certain S-function quotients associated with some
well known series of S-functions.

The results obtained in this way are given in tables 1-7. They may be checked for
consistency in several ways. Use may be made of the factors (5.5)—(5.8) to check the
dimensions of the representations against known formulae (Robinson 1961, p 60, King
1970, Abramsky et al 1973). For example the dimension of the representation {1°; 21}
of U(k) is given by:

Pty e reeal, ) rw-sera ()

N = — L2 -5k. 6.1
D{1% 2} 1(3 UG T3, ek -skA6)( ), ©.1)
where the non-vanishing multiplicities:

M= Miph=1  MEJ=k-3  MEP=3K’-5k+6), 62
6.

have been taken from table 2 1fter making use of (5.10). Itthen follows that
D {T%; 2} =15(k —3)(k - 2)k(k +1)(k +2) 63)

in accordance with the general formula given elsewhere (King 1970).
Alternatively, other checks are provided by the use of the restriction formulae (4.7),
(4.8) and (King 1975):

0K L UK) NI 5 &ML} (64
AL e T Ovep) - i) (65)
69

Sp2k) L Uk) (W) gfg {T: \/(3}
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where €% corresponds to the representation of U(k) in which each group element 4 is
mapped onto (det A)™. For the group element (2.2), this gives rise to the character
expl—3i(¢1 +d2+. ..+ )] It should be stressed that these restrictions (4.7), (4.8)
(6.4)(6.6) are precisely the restrictions appropriate to classes of elements labelled byq;
in both groups and subgroup.

To exploit (6.4) it is only necessary to note that:

oRk) M=% ME". 6.7
It follows that, for example
oek)  M=T ME®=T (MEYS+MET)
=ME3+ MG+ MBE=(k-1)+(k-2)+1=2k-2  (68)

as required for agreement with the result (5.31).

This technique clearly provides a useful check on the internal consistency of the
tabulated results.

Finally it should be remarked that although all weights and their multiplicities may
be calculated using the character formulae given here, these formulae do not of course
provide sufficient information to label uniquely all the basis states of the corresponding
representations. This is a direct result of the formulae (5.12)-(5.17) containing
negative as well as positive terms.

In order to label the basis states it is necessary to use instead of the character
formulae the branching rules appropriate to the reduction from G to the toroidal
subgroups T defined by (2.2)~(2.5). This work has been initiated elsewhere (King
1976) and leads to generalizations of both Gel’fand patterns and Young tableaux, as
well as to the confirmation of the general formulae (5.11)—(5.17) for multiplicities.
These generalizations of the Young tableaux provide a method of calculating the
multiplicities involving only positive contributions, which again may be used to check
the results tabulated here.

Turning to the tables themselves they represent the generalization to all the classia}I
Lie groups of the results appropriate to U(k) tabulated by Blaha (1969). For conven-
ence the tables have been presented in terms of rectangular blocks but it is clear thgt
with a suitable ordering of these blocks the multiplicity matrix of each classical Lie
group G is upper triangular with each diagonal element unity. This implies the
invertibility of these matrices. This has been illustrated in the case of covariant tensor
representation of U(k) by Blaha (1969) who calculated the coefficient By appearing1n
the identity:

ku(xs, X2, ..., x0) =2 Bea(x1, Xg, . . ., %) ©9)
A

which is the inverse of (3.4) mentioned in § 3. The other inverse multiplicity n'lamces
may be calculated in a straightforward way. They are of use in determining for
example, plethysms associated with the orthogonal and symplectic groups. These
define branching rules appropriate to certain group-subgroup restrictions (Pluakett
1972).

The weight multiplicities of the covariant tensor irreducible representatiop§ t?f U(k)
are independent of the rank k. In general all the other weight multiphghes are
dependent on k. The powers of k which appear in any block of the multiplicity matrix
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are determined by the differences, I —s and m — ¢, between the numbers of which A, &
and p, 7 are partitions. The great merit of the results tabulated here is that they apply to
groups of arbitrarily high rank and to unitary representations of arbitrarily high
dimensions. Thus unlike the methods reviewed by Beck and Kolman (1972b), Gruber
(1973) and Kolman and Beck (1973b) the method presented here does not involve
carrying out essentially different calculations for groups differing only in rank.
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